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Abstract— An analytical model is proposed to predict thermal stresses at the fiber-matrix interface in
continuous-fiber-reinforced composites. First, the initial imperfections in fiber layout are introduced,
which are assumed to be the extensional fiber misalignment and the local fiber misalignment
respectively. Then, the displacement fields subjected to thermal loadings are found for the two cases.
The former is based on Timoshenko beam theory and classical elasticity and the latter based on
variational principles. Finally, the thermal residual stresses are determined using the linear stress-
strain relationships. Numerical results show that temperature drop will result in residual shear stress
at the fiber-matrix interface that can cause debonding and micro-cracks in matrix. This study is
extremely useful to understand the microscopic failure mechanism for fiber-reinforced composites.
@ 1997 Elsevier Science Ltd.

NOMENCLATURE
A,B constants in fiber displacements due to fiber micro-bending
B, amplitude of initial fiber curvature
C,eoc, constants
D.d.d constants
e ratio of amplitude to half wavelength of initial fiber curvature
H, h J. K parameters
I moment of initial of each fiber
L wavelength of initial fiber curvature
M bending moment
m, parameter
P.P.p constants
P variation of axial loading in each fiber due to fiber micro-bending
Q shear loading
0.0.4q constants
Fro ¥ fiber radius and surrounding matrix radius in the coaxial cylinder model
T temperature change
U, Vy axial displacement and deflection of each fiber due to fiber micro-bending
v, deflection of initial fiber curvature
U Vi axial and lateral displacements of the matrix due to fiber micro-bending
v, fiber volume fraction
w work
wth i radial and axial displacements of each fiber from the coaxial cylinder model
um, o wt™ radial and axial displacements of the matrix from the coaxial cylinder model
r, 0, x cylindrical coordinates
¥ two-dimensiona: Cartesian coordinates for the matrix
X, ¥ two-dimensional Cartesian coordinates for each fiber
o parameter
A nondimensional wavelength of initial fiber curvature
e, ey, o' thermal stresses in fibers from the coaxial cylinder model
o™, g™, gt thermal stresses in the matrix from the coaxial cylinder model
e, e, & strains in the fibers from the coaxial cylinder model
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g g gl strains in the matrix from the coaxial cylinder model
0, T, interface stresses at the right side of a fiber in the developed model
g,. 7 interface stresses at the left side of a fiber in the developed model
T oms Tioms Tvm additional thermal stresses in the matrix due to fiber micro-bending
Frnuxs Trmax maximum interface stresses
Y(r), D(y) displacement functions
potential energy
, 1, 11,,. 11, energies
A* A** parameters.

1. INTRODUCTION

[t is well known that thermal residual stresses arise from mismatch in thermal expansion
coefficients between fibers and the surrounding matrix in fiber-reinforced composites when
composites cool, down from the curing temperature to the room temperature. The dis-
tribution of thermal residual stresses is three-dimensional and very complicated, dependent
on the volume fraction and material properties of fiber and matrix. Thermal residual stresses
not only degrade composites’ damage behavior and fracture toughness but also lower
impact strength and fatigue life.

Generally, the thermal stress field is described using a coaxial cylinder model (lesan,
1980; Mikata and Taya, 1985: Pagano and Tandon, 1988; Jayaraman and Reifsnider,
1993 ; Powell ez al., 1993). In this model, it is assumed that the fibers are in alignment in
the matrix and the stresses and displacements are continuous at the fiber-matrix interface.
The outer matrix surface is stress free (Fig. 1). The solution from the coaxial cylinder model
demonstrates that there exists only thermal residual lateral stress at the interface but no
shear stresses except for near the stress free surface (such as fiber-breakage), and an
axial compressive loading arising in each fiber with temperature drop. Because interface
debonding depends on the magnitudes of both tensile lateral stress and shear stresses at the
interface (the effect of lateral stress on interface debonding is negligible if it is compressive)
(Brewer and Lagace, 1988), the results from the coaxial cylinder model that lateral stress is
compressive when temperature drops and no shear stress exists at the interface could not
illustrate the debonding phenomena, which may exist in fiber-reinforced composites after
curing and is the fundamental mode of matrix damage.

In fact, fibers in composite materials are not straight. In the wet lay-up manufacturing
process, fibers will springback in the initial cycle of curing, in which the matrix changes
from a liquid state to a gel state with increasing degree of crosslinking (Strong, 1989). In
the prepreg manufacturing process, the escape of entrapped air, water, or volatile and the
flow-out of excess resin from the parts in the curing cycle may move the fibers (Hajjati,
1994). The initial fiber curvature will lower the compressive strength of composite materials.
More detailed descriptions of this mechanism are available in literature (Hahn and Sohi,
1986 ; Lanir and Fung, 1972). In order to reduce the magnitude of initial fiber curvature,
some special manufacturing methods have been taken. For example, in the process of
filament winding, adequate fiber tension is required to collimate the fibers on the mandrel.
The fiber tension is created by pulling the fibers through a number of fiber guides placed
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Fig. |. The configuration of coaxial cylinder model and stress components.
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between the creels and the resin bath (Strong, 1989). Maybe, Herrman er al. (1967) were
the first authors who studied the existence of initial fibre curvature and its effect on
the compressive response of composite materials. Then, investigations on this topic were
conducted by Hanasaki and Hasegawa (1974), Davis (1975), Hahn and Williams (1984),
Yeh and Teply (1988), etc. Generally, an ideal assumption of parallel sinusoidal waves with
given wavelength and amplitude was accepted in these papers although in fact the initial
fiber curvature is not parallel to each other, and even has a random characteristic (Slaughter
and Fleck, 1994). Davis (1975) found that the initial fiber curvature has a wave-like shape
and measured the initial fiber deflection of a boron/epoxy system with an amplitude to
wavelength ratio in order of 1072 by a micrographic method.

The theory of elastic stability (Timoshenko and Gere, 1961) has shown that an axial
compressive loading bends a beam with initial curvature even though the loading is sub-
stantially lower than the buckling strength and the magnitude of the beam’s deflection is
not linearly dependent on the loading. Hence, it can be deduced that the axial compressive
loading in the fiber due to temperature decrease will bend the fiber with initial imperfections,
thus resulting in the existence of residual shear stresses at the fiber-matrix interface. Because
the coaxial cylinder model neglects the initial fiber imperfections, it predicts no existence of
residual shear stresses in the fiber-matrix system. Kalantar and Drzal (1990) and Banbaji
(1988) have measured the interfacial shear strength by single fibre pull-out tests. They
concluded that the interface shear stress equal to or greater than the strength could lead to
debonding. The thermal residual interface shear stress is sufficiently high to suggest that
the interface can be debonded at low temperature.

The main purpose of this paper is to study thermal residual stresses, especially shear
stress component, at the fiber-matrix interface in composite materials from a standpoint of
micromechanics. The available micromechanics analyses are approximate in this paper
because of the assumptions of idealized shapes of initial fiber curvature, fiber packing
symmetry and unmeasurable properties of anisotropic fibers, etc. The initial fiber curvature
is approximated as two idealized modes, namely extensional fiber misalignments (Herrman
et al. 1967 ; Hanasaki and Hasegawa, 1974 ; Davis, 1975), and local fiber misalignments
(Yeh and Teply, 1988 ; Lessard and Chang, 1991). Both the nodes of initial fiber curvature
may exist in fiber-reinforced composites. The extensional fiber misalignments may arise
from uniform springback of fibers in the uncured matrix, while the local fiber misalignments
may arise from local movement of fibers in the uncured matrix due to internal disturbances
(such as flow of resin and escape of entrapped volatile, etc.).

This paper develops an analytical model to determine thermal residual stresses at the
fiber-matrix interface in unidirectional composites. First, the axial compressive loadings in
the fibers due to temperature decrease are determined by the coaxial cylinder model. Then,
the compressive responses of fibers for two cases, corresponding to the shapes of initial
fiber imperfections, are considered under the action of axial compressive loadings. One
is the extensional fiber micro-bending model (abbreviation EFB). In this analysis, the
displacements of fiber and matrix are solved by Temoshenko beam theory and classical
elasticity respectively. The conditions of traction and displacement continuity at the fiber-
matrix interface are satisfied exactly. The other is the local fiber micro-bending model
(abbreviation LFB). In this analysis, the displacements of the fiber-matrix system are
determined by the principle of minimizing potential energy and variational method. From
the displacements, the thermal residual interface stresses are obtained using the linear stress-
strain relationships. The influence of initial fiber curvature, fiber volume fraction and
temperature decrease on thermal residual shear stress at the fiber-matrix interface are
discussed with the numerical results of T300,/5222 composites.

2. BASIC ASSUMPTIONS
The basic assumptions in the present analysis are:

1. The fibers with circular cross-sections are uniformly distributed in the matrix and
infinitely long in the longitudinal direction.
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Both fiber and matrix are linearly elastic.

The displacements are continuous at the fiber-matrix interface (i.e., no interfacial slip).
The temperature distribution is uniform and the constituent material properties do not
vary with temperature.

5. The initial imperfections of each fiber due to manufacturing process are identical and

do not result in the initial stresses in the fiber-matrix system before composite curing.

6. There are two steps for the present analysis: the axial compressive loading in each fiber
due to temperature decrease is determined by the coaxial cylinder model, then the
compressive response of the fibers with initial imperfections from the compressive axial
loadings is determined by EFB model or LFB mocdel. Hence, the total thermal residual
stresses are summations of stresses in the fiber-matrix system from the coaxial cylinder
model (i.e., before fiber micro-bending) and additional stresses only due to the response
of fiber micro-bending.

e

3. THERMAL RESIDUAL STRESSES FROM COAXIAL CYLINDER MODEL

In order to develop the model presented in this paper, the thermal residual stresses in
the fiber-matrix system in which no fiber micro-bending occurs must be obtained at first.
Lame’s method is employed here. Because the initial fiber deflection is a small magnitude
compared with the wavelength of bending fiber (Davis, 1975), we can approximately neglect
the effect of the fiber initial deflection (i.e., assume that the slope ratio of initial fiber
curvature is equal to zero).

Consider a concentric model shown in Fig. 1. This model omits the constraint effect
of the surrounding composite. r, and r,, denote the radius of fiber and the radius of
surrounding matrix. It is obvious that fiber volume fraction v, is:

=-. (1

Because the fiber is transversely isotropic and the matrix is isotropic, the strain-stress
relations, taking into account thermal expansions and temperature change, for the fibers
and the matrix are:
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where the superscripts £ and m denote fiber and matrix, E and u are Young’s modulus and
Poisson’s ratio, a and T are thermal expansion coefficient and temperature change.
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In Fig. 1, the radial displacements 4™ and the axial displacements w® for both the
fiber and matrix (the superscript # denotes cither fiber (when n = f) or matrix (when
n = m)) must satisfy the following equations:

a2 1du"™® u®

@ Trdr e @
dzn®
e =0, &)
The general solution for eqn (4) is:
A(nl B(n)

U = 5 (6)

and the general solution for eqn (5) is:
w" = CWx+ D™ @)

where 4™, B C" and D" are unknown constants which can be obtained by boundary
and interface conditions.
The strains are given by :

dw®

m
&y dx (8.a)

du'”
g = - (8.0)

()
e =2 (8.0)
Considering eqns (2), (3), (6), (7) and (8) and enforcing the following conditions:
u =4 and w' =w" whenr=r (9.a)
o and of’ #cc whenr—0 (9.b)
o) =" whenr=r, (9.0
o™ =0 whenr=r, 9.d)
J‘ aﬁ”rdr—f—J‘ g rdr = 0 9.e)
0 7

we can obtain the thermal stress field. For additional details for the solution, the reader is
referred to literature (Lanir and Fung, 1972; Steif, 1984 ; Mikata and Taya, 1985). Figure
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Fig. 2. Thermal stress distribution from the coaxial cylinder model in a T300/5222 composite with
a fiber volume fraction z, = 0.6, temperature change 7 = —1°C.

2 shows the thermal residual stresses in a T300/5222 composite with material properties
listed in Table 1. The temperature change is set to be — 1.0°C without loss of generality.

The Lame’s model presents that the mismatch of the thermal expansion coefficients
between fiber and matrix results in an axial compressive loading in each fiber when the
temperature is decreased. It also shows no shear stresses exist in the fiber-matrix system
and the radial stress normal to the fiber-matrix interface is compressive. These results can
not explain the reason that debonding occurs in fiber-reinforced composites after curing
which may be micrographically observed in experiments. In fact, the axial compressive
loading ¢! will bend the fiber with initial deflection even though it is significantly lower
than the fiber buckling strength and the bending deflection is not linearly dependent on the
compressive loading. The matrix acts as an elastic foundation to provide lateral support
for the fibers. So the additional thermal residual stresses are deduced associated with the
fiber micro-bending.

The compressive response of fiber-reinforced composites under the action of thermal
axial compressive loadings in fibers can be investigated by theory of elastic stability (Timo-
shenko and Gere, 1961). In the analysis of compressive strength of unidirectional
composites, two models, based on the shapes of fiber deflection, have been developed. The
extensional fiber micro-buckling model (Wass er al. 1990) postulated that the buckled
deflections of fibers were described by triangular functions and satisfied the Timoshenko
beam theory. The displacements of the matrix were determined by classical elasticity. The
local fiber micro-buckling model (Hanasaki and Hasegawa, 1974 Yeh and Teply, 1938 ;
Lessard and Chang, 1991) was developed from the principle of minimum potential energy.
The deflections of fibers were also postulated to be triangular functions. The strains in
matrix were uniform along the transverse direction between two neighboring fibers and the
contribution of matrix energy was only made by shear strain. In the present analysis, we
consider two cases of initial fiber curvature, extensional fiber misalignments and local fiber

Table 1. The material properties for T300 fiber and 5222 matrix

Longitudinal Modulus E, 221.0 GPa 3.8 GPa
Transverse Modulus E, 13.8 GPa

Longitudinal Shear Modulus G2 9.0 GPa 1.4 GPa
Transverse Shear Modulus [ 4.8 GPa

Longitudinal Poisson’s Ratio Hia 0.20 0.35
Transverse Poisson’s Ratio s 0.25

Thermal Expansion Coefficient % —0.3x10 ¢°C 41.0x 107%/°C
Thermal Expansion Coefficient %, 3.1x107%°C

Fiber Radius r 3.8%x107°m
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misalignments. Hence, two analytical models, namely extensional micro-bending model
and local micro-bending model are developed. In these two models, each fiber is treated as
Timoshenko beam and its deflection is assumed to follow a sine law.

4. THEORY FOR THE EXTENSIONAL FIBER MICRO-BENDING (EFB) MODEL

4.1. Problem formulations

The configuration of the idealized model 1s illustrated in Fig. 3. Because the considered
fiber-matrix system is infinite and the axial compressive loading ¢!’ applied to each fiber is
equal, each fiber is bent in an identical manner, and the interaction between adjacent fibers
is null (Lessard and Chang, 1991). We can isolate the analytical model into a fiber and
surrounding matrix to perform analysis. Different from the loaded boundary conditions of
a compressive loaded fiber-matrix system in the literature (Wass et /., 1990 ; Hanasaki and
Hasegawa, 1974 ; Yeh and Teply, 1988 ; Lessard and Chang, 1991), there must be tensile
loading ¢ applied to the matrix boundaries in a thermal loaded fiber-matrix system
because residual stresses in the fiber-matrix system are self-equilibrium. The followings are
noted, referred to Fig. 3:

C =, T (10.2)
h = 2r,. (10.b)

The initial fiber deflection due to the manufacturing process is assumed to be (Dauvis,
1975 ; Hanasaki and Hasegawa, 1974 ; Yeh and Teply, 1988 ; Lessard and Chang, 1991):

V, = B;sin(ax) (11.a)

and an amplitude to half wavelength ratio of initial fiber curvature is defined as:

GQ) GQ)

N
j\ﬁ
= <

(a) (b)

Fig. 3. The configuration of extensional fiber micro-bending model.
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e=— (11.b)

where o = 2n/L and L is the bending wavelength.

If we denote V;and U, as the lateral deflection and axial displacement of the fibers,
and V,, and U,, as the lateral and axial displacements of the matrix, which arise from the
fiber micro-bending under the axial compressive loading in each fiber, the continuity
conditions of displacements at the fiber-matrix interfaces, base on the assumptions of small
plane rotation and middle surface of Timoshenko beam, require :

5 qa =[U, 2.
|:l]f 2 dx :L=h/2 [L m]v: —c (1 a)
Wisaniz = Valy= - (12.b)
hdv,
e - n
|:U,+ 2 dx :|;= —hi2 [UM]y=C (1“'0)
Vidse —n2 = [Vl (12.d)

Considering each fiber has initial sinusoidal curvature and the displacement continuity
conditions in eqns (12.b) and (12.d), we assume that:

V, = Bsin(ox) (13.2)
V., = ®(y) sin(ax). (13.b)

V, plus V, is the total fiber displacement in the lateral direction. Since the lateral dis-
placements V,and V,, follow a sine law, the axial displacements U,and U,, must be assumed
to follow a cosine law to guarantee displacement continuity at the fiber-matrix surface (see
eqns (12.a) and (12.c)), thatis:

U, = A cos(ax) (14.2)
U, = Y(y)cos(ax). (14.b)
Now the governing equations of a fiber in the bent state are developed. From Fig.

3(b), an infinitesimal beam element of fiber is cut as shown in Fig. 4. The force and moment
equilibrium equations for the beam element in the x-y plane are derived as:

G
P Q T T, Q+dQ p+dp
&=
- M M+dM
y
*tr—
- T
X
Gl

Fig. 4. The infinitesimal beam element.
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dp’

i tm—1)=0 (15.2)
dgo d2(V,+ V)
bt —g Vg NS
dx +(01 G',.) gy h dx2 0 (15b)
d*M  hd(r,—1,) d
_EM Rl o) 4O, (15.0)

dxz 2 dx dx

where p’ is the variation of axial force at bending, M is the bending moment in the fiber, o,
and 1,, g, and 7, are the interface stresses at the right and left surfaces of the fiber and Q is
the shear loading at the fiber cross-section. In eqn (15.b), the term p’d*(V,+ V,)/dx* has
been neglected because it is of second order and the bending is infinitesimal.

From the stress-strain relation and the beam’s deflection-moment relation, we obtain :

du,
‘= hEN =L .
P =hEP (16.2)
d*v;

M= —EP [~
Cdx®

(16.b)

where Ef” is the longitudinal Young's modulus of the fibers and I, is the moment of inertia
of the fibers that is equal to A*/12. Combining eqns (15) and (16), the governing equations
for the bent fibre are developed as follows:

d‘v, d2(V,+ V) hd
) / o / J ey L —
EPL JHolh ot 40— 0) = 5 ) = 0 (17.2)
d*v,
— (1 —1)+hEY —L =0, (17.b)
dx?

For the matrix, the equilibrium equations expressed in terms of its displacements in
the x-y plane strain state are:

é*U, U, ey,
2 2 (1= 24+ A+ ——=0 18.

" + (1 —pi? ay +( +’u1')@xdy (18.a)

oy, 82V, i
9 Tm ] LIS TR () L 18.b
P +(1—pi?) o +(1+47) oxdy (18.b)

The overall equilibrium condition of the fiber-matrix system requires:

p’+J Gomdy = 0. (19)

Hereafter, the stress and strain components with subscripts / and m denote the residual
stresses and strains in fiber and matrix due to fiber micro-bending. Substituting eqns (13.b)
and (14.b) into (18) and eliminating @, the following fourth order ordinary differential
equation for ¥ is obtained :

WY 2029+ 1t = 0. (20)

Similarly, the equation for @ is:
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OV 247"+ oD = 0. 2n

The solutions for eqns (20) and (21), subjected to the conditions in eqns (12), are:
Y(y) = C,cosh(ay)+ C, sinh(oy) + C5y cos h(xy) + C,y sin h(xy) (22)
®(y) = D, cosh(ay)+ D, sinh(axy) + D;ycosh(ay) + D,y sin h(ay). 23)

Through eqns (18), C; and D, are related by :

Cy (3=
D, = C3—~3( £ "~> (24.2)
AL +pi?
Cy /3 —pi
Dy=C,— —1<J—'?> (24.b)
o \L+upy
D, =C, (24.¢)
D, = Ds. (4.d)

Enforcing the restrictions in eqns (12), it is derived that

C,=2mA (25.a)
C, = B(myp+2m;) (25.b)
Cy = aB(myup+2ms) (25.¢)
Cy = 2umgA. (25.d)

The expressions of m; and p are listed in Appendix A. Based on the linear stress-strain
relationships, the additional thermal residual stresses due to fiber micro-bending in the
matrix are solved:

E(lm) 6 L’Y (‘; V
Oy = — - il +u"’l’ ,,—m
oy

-\ O
E(Im)
= ————(a¥ + Y ') cos(ax) (26.2)
(1
E ;m) a l/m () ﬁ U'rn
o.ym =" T A +ﬂ12 AT
(l _,u(]";)k) C}" (2R
E;””
= (D — P a®D) sin(ax) (26.b)

(1— 477y

E™  (3U, oV,
Toym = 7 "~ + 5
o204\ o Ox

~(m)

l
= (¥ +ad)cos(ax). (26.c)
2(1+417)

From the traction continuity conditions at the fiber-matrix interface, the interface stresses
are:
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o, = [J\'rri])':: -C (273)
g, [O-wn]y:q (27b)
T, = [Toymlym - (27.c)
T = [t.‘f)')?‘l]'l':(“ (27d)
Combining eqns (22)—(27), we obtain:
g, = (P, A+ P, B) sin{ax) (28.a)
6, = (P, A+ P,B)sin(ax) (28.b)
7, = (@1 A+ Q, B) cos(ax) (28.¢)
1, = (Q, A+ Q, B) cos(xx) (28.d)

where P, and P, Q, and @, are expressed in Appendix A. Substituting eqns (28) into (17)
results in:

A4=0 (29.a)

B=— B 29.b

= (29.b)
o)

where ¢, is the critical compressive loading of the extensional fiber micro-buckling applied
to each fiber in unidirectional composites (Wass ez al., 1990) and written as:

|
G, = —%(a“ E+2P, +ahQ,). (30)
o2

Hence, the maximum residual stresses at the interface determined by eqns (28) are:

Trax = QQB (313)
Omax = P2B (31b)

Because A is equal to zero, it is verified that eqn (19) is automatically satisfied. Furthermore,
it is deduced that shear and lateral stresses at the right and left surfaces of a fiber have
identical values. The stresses in eqns (26) result from the fiber micro-bending induced by
the thermal axial compressive stress in each fiber. The total stresses should be the summation
of stresses associated with the fiber micro-bending and stresses before fiber micro-bending
in the above section (i.c., from the coaxial cylinder model).

4.2. Results and discussion

The development of extensional fiber micro-bending model has been completed. It can
be seen that thermal residual stresses at fiber-matrix interfaces are functions of the amplitude
and wavelength of initial fiber curvature, fiber volume fraction, temperature decrease and
material properties of fiber and matrix. To illustrate the results, T300/5222 composites are
chosen with fiber and matrix material properties listed in Table 1. The value of ¢ in eqn
(11), which is determined by manufacturing quality, should be measured by experiments.
For the boron/epoxy system, Davis (1975) experimentally found that the value of ¢ is in
the order of 107% Yeh and Teply (1988) assumed that ¢ for a kevlar/epoxy system is also
in this range in analyzing the compressive response and got a reasonable result. For the
graphite/epoxy system, Highsmith er al. (1992) experimentally determined that the value
of e ranges between 0.01 and 0.1 by an optical microscope method. Hence, the value of ¢
for T300/5222 system is assumed to be from (.01 to 0.1 in the present analysis.
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Fig. 5. Variation of maximum residual interface shear stress with nondimensional wavelength A,
temperature decrease 7 = —1°C.

The numerical results show that residual lateral stress at the fiber-matrix interface due
to fiber micro-bending has a small magnitude compared to the residual interface shear
stress. Hence, the discussions are focused on the existence of interface shear stress and we
also conclude that debonding at interface associated with temperature decrease arises from
thermal residual shear stress.

In Fig. 5, variation of maximum interface shear stress with nondimensional wavelength
A (4 = Ljh) is plotted for T300/5222 composites with various fiber volume fractions v, and
amplitude to half wavelength ratios e. These plots show a continuous dependence of 7.,
on wavelength 4 for given values of e. [n a small range of nondimensional wavelength
(typically / < 30 in Fig. 5), the maximum shear stress changes sharply with i. However,
Tmax aITIVES at a corresponding limited value when the nondimensional wavelength / is large
enough (when /2 > 60 in Fig. 5). This implies that the interface shear stress has an upper
bound value for a given value of ¢ when the fibers have initial imperfections with long
wavelengths. In the following, we discuss the upper bound interface shear stress.

The admissible residual interface shear stress, which is defined by the limited value in
Fig. 5, vs fiber volume fraction v,1s shown in Fig. 6. These plots demonstrate a lower value
of 1.« for a composite with higher fiber volume fraction. This is because a fiber-matrix
system with higher v, is better able to resist bending (i.e., higher value of buckling strength
6., in eqn (30)) and the axial compressive loading ¢! in the fiber is smaller, thus making
the term o,,6¢ in eqn (29.b) much smaller. In aeronautical structures, the fiber volume
fraction is 0.6 or more for most fiber-reinforced composites based on the requirement of
strength and stiffness.

In Fig. 7, variation of the upper bound z,,,, with temperature decrease is presented. In
the conventional models, thermal stresses in fiber-reinforced composites linearly depend on
the magnitude of temperature change. It can be seen from eqns (29) and (31) that thermal
residual stresses are not a linear function of temperature decrease 7T in the present model
because of the existence of initial fiber curvature. However, numerical results show that the
variation of thermal residual stresses with temperature decrease is nearly linear when the
magnitude of temperature decrease is in the order of 10 This can be explained by the
reason that the value of ¢,,/¢\” in eqn (29.b) is much greater than unit for small temperature
decrease in this range.

Figure 8 shows effects of initial fiber deflection on the upper bound magnitudes of
maximum residual interface shear stress for various v. The magnitude of t,,, linearly
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Fig. 6. Relation of the upper bound magnitude for maximum residual interface shear stress and
fiber volume fraction v, temperature decrease 7 = —1°C.
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Fig. 7. Variation of the upper bound magnitude for maximum residual interface shear stress with
temperature decrease 7.

depends on the amplitude to half wavelength ratio e. From eqns (29.b) and (30), we find
that the magnitude of maximum interface shear stress is proportional to the amplitude of
initial fiber curvature. Therefore, it is important to improve manufacturing quality to reduce
the initial deflection of fibers. Because the fiber volume fraction is determined by the
requirement of strength and stiffness of composite materials and temperature range is
determined by the requirement of curing cycle, improvement of manufacturing quality is
the only way to reduce thermal residual stresses in fiber-reinforced composites.

5. THEORY FOR THE LOCAL FIBER MICRO-BENDING (LFB) MODEL

5.1. Problem formulations
The configuration of the analytical model is shown in Fig. 9. For the same reason
mentioned in the previous section, the model is also isolated into a fiber and surrounding
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Fig. 8. Effect of the amplitude to half wavelength ratio e on the upper bound magnitude for
maximum residual interface shear stress, temperature decrease 7 = —1"C.
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Fig. 9. The configuration of local fiber micro-bending model.

matrix. The displacements for each fiber and the matrix due to fiber micro-bending are
defined to be the same as in eqns (13) and (14). Thus the matrix strains are derived by :

Een = — oW (y) sin(ox) (32.a)
&m = O'(y) sin(ax) (32.b)
Yam = [P7(¥) +a®(y)] cos(ax). (32.¢)

The total potential energy of the system can be divided into five parts:
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H = H7+ Hff + IIm + Hml + W (33)

where I1,and I1,, are strain energies in the fiber and the matrix due to fiber micro-bending,
Il and I1,,, are work in the fiber and the matrix done by thermal residual stresses from the
coaxial cylinder model (i.e., before fiber micro-bending) on the corresponding deformations
due to fiber micro-bending, and W is work done by the boundary applied residual loadings.
They can be expressed, respectively, as:

E}/)h L2 du, 2 1 L2 (42 N2
I, =—— N dx+ = ENY AV )

=), Va J i) Ve ) dx (34.2)
H,», = J‘o’(\ﬁg\,,du (34.b)

1 EM™ R , ) Ev ,
Hm - _J [—[——ﬁ(a‘;m +8;'” + z‘u({g)g\‘mswn) + __I—’)’.‘\“rn':'dv (34C)

2L - 21+ )

H"” = J‘E?Tja,"rndv"ihjU§M)8\nzdl7 (34d)

¢ 1 Li2 d2 V ) V 2 N2
W=q¢"| 2¥dy— ag»/uz( 24+ = SALGEO LA NN (34.¢)
—e \ 2 0 dX2 dx

In eqn (34.d), the radial stress ¢! form the coaxial cylinder model is approximately
replaced by its average value 6™ along the y axis for the reason of simplicity. This
approximation is acceptable because the magnitude of ¢! is much smaller than those of
o and o (see Fig. 2).

Combining the related equations and integrating with respect to x from zero to L/2,
the following equation is given:

L 3 (m) s
M= Eg—{oﬁE;f’h/F +a*EY1,B* +J [— (W — (YD)
L)
E;m) ) ,:;’m) 2 4 .
— <d>2 PR —— ‘P’+a<l)> + *af””CD}dy
(1—uy’ 2(1+p7) x

+202¢\"h(B> +2BB)}. (35)

Using standard procedure of calculus of variation, the minimization of total potential
energy IT in eqn (35) must satisfy the following Euler—Poisson’s equation :

d /eIy éll
(e |- = 36
dy(@‘P’) ov =0 (36)
d /eIl eIl
il il Wiy 3
dy(&(D’) ‘D G7
Thus, the following equations are developed :
207 — (1 — )P —a(1+pi7)®" =0 (38)

20" — o (1= pi3) O — (1 +pp2) ¥ = 0. (39
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It is interesting that the governing equations for the two functions ¥ and ®, obtained by
minimizing the potential energy have the same forms as by theory of classical elasticity.
Therefore, the general solutions of eqns (38) and (39) are obtained in a fashion similar to
the previous section, and then all the constants in the general solutions of ¥ and @ in both
EFB model and LFB model are represented by the two constants 4 and B from the
displacement continuity conditions at the fiber-matrix interface. However, the two constants
A and B in EFB model are determined by the traction continuity conditions and the
equilibrium equations of Timoshenko beam, while the two constants 4 and Bin LFB model
are determined by minimizing the potential energy of the system.

Substituting functions ¥ and ® into eqn (35), the summation of potential energy of
the system is in terms of two variables 4 and B. Minimizing the potential energy with
respect to these variables

QE =0 40
A~ (40)
QE =0 41
(B~ (1)
results in the solutions of 4 and B:
A=0 (42.3)
-2 42.b
sy (42.b)
—-—1
%

where ¢, is the critical compressive loading of fiber local micro-buckling applied to each
fiber in unidirectional composites (Yeh and Teply, 1988 ; Lessard and Chang, 1991) and
written as:

1
T, = ‘Th(a4E/I/+H]J1 +H2J2 +H3J3 +H4J4 +H5J5) (43)
x

and the notations H; and J; are listed in Appendix B. The maximum thermal residual
stresses at the fiber-matrix interface have the same modes as in eqns (31):

Tmax = QZB (443)
Omax = P2B. (44.b)

5.2. Results and discussions

The analytical model of thermal residual stresses for fiber local micro-bending has
been developed. Results are computed for T300/5222 composites. Similar to the results of
EFB model, the maximum thermal residual stresses have limited values when the wavelength
L is large enough. Also, we discuss this upper bound magnitude of maximum interface
shear stress in the present numerical example.

Numerical results show that P,, P, and Q, are all much smaller than @,, thus, fiber,
micro-bending results in additional shear stress that is much larger than additional lateral
stress at the fiber-matrix interface. Hence, it is concluded that the supporting effect of
matrix to fiber bending is dominated by matrix shear deformation. So it is reasonable that
the authors (Hanasaki and Hasegawa, 1974; Yeh and Teply, 1988 ; Lessard and Chang,
1991) only considered the contribution of matrix shear strain energy to the total potential
energy of the fiber matrix-system.
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Fig. 10. Relation of the upper bound magnitude for maximum residual interface shear stress and

fiber volume fraction v, temperature decrease 7= —1°C.
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Fig. 11. Variation of the upper bound magnitude for maximum residual interface shear stress with
temperature decrease 7.

The relation of the upper bound magnitude of maximum residual shear stress at the
fiber-matrix interface and fiber volume fraction for LFB model is shown in Fig. 10. The
variation of the upper bound 7., with temperature decrease T is shown in Fig. 11. The
effect of e on the upper bound magnitude of 7., is presented in Fig. 12. It is found that the
results for the upper bound values of maximum interface shear stress from EFB model and
LFB model are very close. Comparing the formulations of EFB model and LFB model,
the difference that we can find is between the critical compressive loading of extensional
fiber micro-buckling in eqn (30) and that of local fiber micro-buckling in eqn (43). The
critical compressive loadings of these two fiber micro-buckling modes have limited values
when the wavelength is large enough (Wass et al., 1990), and these two buckling strengths
are very close to each other. This is the reason why the upper bound magnitudes of
maximum interface shear stresses in the extensional fiber micro-bending mode and the local
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Fig. 12. Effect of the amplitude to half wavelength ratio ¢ on the upper bound magnitude for
maximum residual interface shear stress, temperature decrease 7= —1°C.

fiber micro-bending mode are almost identical, if the extensional initial fiber curvature and
local initial fiber curvature have the same ratio of amplitude to wavelength.

6. CONCLUSIONS

An analytical model has been set up for predicting thermal residual stresses at the
fiber-matrix interface in fiber-reinforced composites. Both solutions for extensional fiber
misalignment model and local fiber misalignment model are completed respectively. It is
important to combine two models to form a complete solution because both the fiber
imperfection modes may occur in fiber-reinforced composites. The results are very useful
to explain some microscopic phenomena of fiber-reinforced composites. The following
conclusions can be made:

1. The thermal residual shear stress at the fiber-matrix interface results from temperature
decrease during curing process and initial fiber imperfections which are unavoidable in
fiber-reinforced composites through manufacturing process.

2. The magnitude of thermal residual interface shear stress depends on fiber volume frac-
tion, material properties and the wavelength and amplitude of fiber initial curvature. The
greater the fiber volume fraction, the smaller the shear stress is. The interface shear stress
linearly depends on the amplitude to wavelength ratio of initial fiber curvature, thus the
manufacturing technique is a key factor to reduce its magnitude.

3. There is an approximately linear relationship between thermal residual stresses and
temperature drop when the magnitude of the drop is in the order of 10°

4. The supporting action of matrix to fiber-bending is dominated by matrix shear defor-
mation. So the energy due to matrix normal deformation can be omitted for predicting the
fiber buckling strength by energy principle.

5. There exist upper bound magnitudes of maximum residual shear stress at the fiber-
matrix interface for both extensional fiber micro-bending mode and local fiber micro-
bending mode with long wavelengths. These two upper bound magnitudes are very close
when the extensional initial fiber curvature and local initial fiber curvature have the same
amplitude to wavelength ratio. Therefore, thermal residual stresses in a unidirectional fiber-
reinforced composite system can be computed from either of the two fiber misalignment
models if the amplitude to half wavelength ratio e of the system is known.
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APPENDIX A

The expressions used in the text are:

2K
—cos h(ac)+ —sinh(xc)
P4

m, = A* (A1)

2K
—sinh(ze) + —cos h(ac)
pq

my = i (A2)
cos h{ac) :
my= (A.3)
2cos h{ac) .
my= e (A.4)
2 sin h(ac
my = — 2Smh() (A.S5)

pgA™*
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Zsinh(xe)
5 = TpaA* (A.6)
where :
2nh )
= (A7)
2c )
=7 (A.8)
33—
K= o (A.9)
2K
A% =2 sinh(220) -2 (A.10)
2K
A** = Esin h(2uc)+2 (A.11)
and
E(lmra
P, = {2m, cos h(xc)(1 — p{%) +mq[2 cos h{ac)(1 — K) + pg sin h(xc)(1 - — (A.12)
(1—ui?)
P, = {2m,psinh(xc) (1 — (%) + 2ms sin hxc) (1 — p{%) + m, [ psin hiac) (1 — K)
1 - . E(km)(x
+§p‘q cos h(xe)(1 — u{)} —ms[2 sinh(xe) (1 — K) + pgcos h(l -;1‘,’3’)]}—1— (A.13)
(U—p?
= (A1)
P, = —P, (A.15)
. . E{Mo
0, = {2m, sinh(ac) +m,[sin h(ac) (1 — K) + pg cos h(xc)]} ———— (A.16)
(1+ui?)
Q, = {2mypcosh(ac) + 4m; cos h{xe) + myp[ cos h(xc)(1 — K) + pg sin h(ze)]
E{my
+2ms[cosh(xc)(1 —K) + pgsinh{ac)]} ————  (A.17)
201+ p4%)
0 =-0 (A.18)
0: =0, (A.19)
APPENDIX B
E¢ .
H =— [ocs +¢3) +ad;)? (B.1)
(1 +p3)
2E(lm] p— — _
H, = - [#% 3 =204 (o, + di)ea + (ad, + o)) (B.2)
(1—ui?)
4Em™ — S
Hy = —— [ePcscy —oau'y (e, dy +acsd, +c3d,) +ody (2d, +d,)]
(I—ui)
2E("') - - .
- (e o) + da(as + &) Hod, (5 +ds)) (B3)
(14 pi7
(2

EY

=
(1441

(ci+dy)’ (B.4)
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2E(‘nx)11

Hy = —————( —2u,c3ds +d3)
(11—
where
¢, =2m,
¢ = pmy +2m,
o5 = a(pm, +2ms)
¢y = 2am,
d, = (pm; +2m;) — K(pmy +2ms)
&y = 2m, —2Km,
dy = 2am,
dy = a(pm,+2ms)
and

1 1 .
= E‘+ ;&;sm h(2uxc)

-
I

1 1.
=3¢ + Esm h(2ac)

1 1
J; = —ccos h(2oe) — -—sin h(2oc)
4z 8o’

1 1 1 1
Ji = - sinh(2ac) — —coosh(2xe) + ——;sin h(2ac) — e

L " 8x

L, 1 1. 1
Js = —¢” sinh(2uc) — — ccos h(2uc) + ——sinh(2ze) + ~ ¢*.
4 402 3 6

o o
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